- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Agarwal, Ankur (1)
-
Banoub, Raphael (1)
-
Chalam, KV (1)
-
Gupta, Shailesh (1)
-
Pandya, Abhijit S (1)
-
Sanghvi, Harshal A (1)
-
Singh, Shagundeep (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Kim, Euishin E (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kim, Euishin E (Ed.)Background:Early disease detection is emphasized within ophthalmology now more than ever, and as a result, clinicians and innovators turn to deep learning toexpedite accurate diagnosis and mitigate treatment delay. Efforts concentrate on the creation of deep learning systems that analyze clinical imagedata to detect disease-specific features with maximum sensitivity. Moreover, these systems hold promise of early accurate diagnosis and treatmentof patients with common progressive diseases. DenseNet, ResNet, and VGG-16 are among a few of the deep learning Convolutional NeuralNetwork (CNN) algorithms that have been introduced and are being investigated for potential application within ophthalmology. Methods:In this study, the authors sought to create and evaluate a novel ensembled deep learning CNN model that analyzes a dataset of shuffled retinal colorfundus images (RCFIs) from eyes with various ocular disease features (cataract, glaucoma, diabetic retinopathy). Our aim was to determine (1) therelative performance of our finalized model in classifying RCFIs according to disease and (2) the diagnostic potential of the finalized model toserve as a screening test for specific diseases (cataract, glaucoma, diabetic retinopathy) upon presentation of RCFIs with diverse diseasemanifestations. Results:We found adding convolutional layers to an existing VGG-16 model, which was named as a proposed model in this article that, resulted insignificantly increased performance with 98% accuracy (p<0.05), including good diagnostic potential for binary disease detection in cataract,glaucoma, diabetic retinopathy. Conclusion:The proposed model was found to be suitable and accurate for a decision support system in Ophthalmology Clinical Framework.more » « less
An official website of the United States government
